skip to primary navigation skip to content
 

Eruptions that shook the world

References cited in the 2011 edition of Eruptions that shook the world

DOI links have been provided where known.

Jump to reference: 50, 100, 150, 200, 250

  1. Scrope. G.P., 1862, Volcanos, Longman, Green, Longmans & Roberts.
  2. Courtillot, V., Davaille, A., Besse, J. & Stock, J., 2003, Three distinct types of hotspots in the Earth’s mantle, Earth and Planetary Science Letters, 205, 295–308. doi:10.1016/S0012-821X(02)01048-8
  3. Lowenstern, J.B. & Hurwitz, S., 2008, Monitoring a supervolcano in repose: heat and volatile flux at the Yellowstone caldera, Elements, 4, 35–40. doi:10.2113/GSELEMENTS.4.1.35
  4. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B., 1986, A chemical classification of volcanic rocks based on the total alkali-silica diagram, Journal of Petrology, 27, 745–750. doi:10.1093/petrology/27.3.745
  5. Mason, B.G., Pyle, D.M. & Oppenheimer, C., 2004, The size and frequency of the largest explosive eruptions on Earth, Bulletin of Volcanology, 66, 735–748. doi:10.1007/s00445-004-0355-9
  6. Witham, C.S., 2005, Volcanic disasters and incidents: a new database, Journal of Volcanology and Geothermal Research, 148, 191–233. doi:10.1016/j.jvolgeores.2005.04.017
  7. Simkin, T., Siebert, L. & Blong, R., 2001, Volcano fatalities – lessons from the historical record, Science, 291, 255. doi:10.1126/science.291.5502.255
  8. Cronin, S.J., Hedley, M.J., Neall, V.E. & Smith, R.G., 1998, Agronomic impact of ash fallout from the 1995 and 1996 Ruapehu Volcano eruptions, New Zealand, Environmental Geology, 34, 21–30. doi:10.1007/s002540050253
  9. Horwell, C.J. Sparks, R.S.J., Brewer, T.S., Llewellin, E.W. & Williamson, B.J., 2003, Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards, Bulletin of Volcanology, 65, 346–362. doi:10.1007/s00445-002-0266-6
  10. Cook, R.J., Barron, J.C., Papendick, R.I. & Williams, G.J., 1981, Impacts on agriculture of Mount St Helens eruption, Science 211, 16–22. doi:10.1126/science.211.4477.16
  11. Rolett, B. & Diamond, J., 2004, Environmental predictors of pre-European deforestation on Pacific islands, Nature, 431, 443–446. doi:10.1038/nature02801
  12. Langmann, B., Zakšek, K., Hort, M. & Duggen, S., 2010, Volcanic ash as fertiliser for the surface ocean, Atmospheric Chemistry and Physics, 10, 711–734. doi:10.5194/acp-10-3891-2010
  13. Manville, V., Németh, K. & Kano, K., 2009, Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards, Sedimentary Geology, 220, 136–161. doi:10.1016/j.sedgeo.2009.04.022
  14. Maeno, F. & Taniguchi, H., 2009, Sedimentation and welding processes of dilute pyroclastic density currents and fallout during a large-scale silicic eruption, Kikai caldera, Japan, Sedimentary Geology, 220, 227–242. doi:10.1016/j.sedgeo.2009.04.015
  15. Delmelle, P., Delfosse, T. & Delvaux, B., 2003, Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions, Environmental Pollution, 126, 445–457. doi:10.1016/S0269-7491(03)00196-9
  16. Crimp, R.J., Cronin, S.J., Charley, D.T., Neall, V., Stewart, R.B. & Oppenheimer, C., 2010, Dental fluorosis linked to degassing of Ambrym volcano,. Vanuatu: a novel exposure pathway, Environmental Geochemistry and Health, doi:10.1007/s10653-010-9338-2.
  17. Longo, B.M., Rossignol, A. & Green, J.B., 2008, Cardiorespiratory health effects associated with sulphurous volcanic air pollution, Public Health, 122, 809–820. doi:10.1016/j.puhe.2007.09.017
  18. Tanguy, J.-C., Ribière, C., Scarth, A. & Tjetjep, W.S., 1998, Victims from volcanic eruptions: a revised database, Bulletin of Volcanology, 60, 137–144. doi:10.1007/s004450050222
  19. McCormick, M.P., Thomason, L.W. & Trepte, C.R., 1995, Atmospheric effects of the Mt Pinatubo eruption, Nature, 373, 399–404. doi:10.1038/373399a0
  20. Read, W.G., Froidevaux, L. & Waters, J.W., 1993, Microwave Limb Sounder measurements of stratospheric SO2 from the Mt. Pinatubo eruption, Geophysical Research Letters, 20, 1299-1302. doi:10.1029/93GL00831
  21. Minnis, P., Harrison, E.F., Stowe, L.L., Gibson, G.G., Ddenn, F.M., Doelling, D.R., and Smith, W.L., Jr., 1993, Radiative climate forcing by the Mount Pinatubo eruption, Science 259, 1411-1415. doi:10.1126/science.259.5100.1411
  22. Parker, D.E., Wilson, H., Jones, P.D., Christy, J.R., and Folland, C.K., 1996, The impact of Mount Pinatubo on world-wide temperatures, International Journal of Climatology, 16, 487-197. doi: 10.1002/(SICI)1097-0088(199605)16:5<487::AID-JOC39>3.0.CO;2-J
  23. Trenberth, K.E. & Dai, A., 2007, Effects of Mount Pinatubo volcanic eruption on the hydrological cycle as an analog of geoengineering, Geophysical Research Letters, 34, L15702, doi:10.1029/2007GL030524.
  24. Stenchikov, G., Robock, A., Ramaswamy, V., Schwarzkopf, M. D., Hamilton, K., and Ramachandran, S., 2002, Arctic Oscillation response to the 1991 Mount Pinatubo eruption: effects of volcanic aerosols and ozone depletion, Journal of Geophysical Research, 107(D24), 4803, doi:10.1029/2002JD002090.
  25. Stenchikov, G., Delworth, T.L., Ramaswamy, V., Stouffer, R.J., Wittenberg, A. & Zeng, F., 2009, Volcanic signals in oceans, Journal of Geophysical Research, 114, D16104, doi:10.1029/2008JD011673.
  26. Gleckler, P.J., Wigley, T.M., Santer, B.D., Gregory, J.M., AchutaRao, K. & Taylor, K.E., 2006, Volcanoes and climate: Krakatoa’s signature persists in the ocean, Nature, 439, 675. doi:10.1038/439675a
  27. Mercado, L.M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M. & Cox, P.M., 2009, Impact of changes in diffuse radiation on the global land carbon sink, Nature, 458, 1014–1017. doi:10.1038/nature07949
  28. Gu, L., Baldocchi, D., Verma, S.B., Black, T.A., Vesala, T., Falge, E.M., and Dowty, P.R., 2002, Advantages of diffuse radiation for terrestrial ecosystem productivity, Journal of Geophysical Research, 107(D6), 4050, doi:10.1029/2001JD001242.
  29. Timmreck, C., Lorenz, S.J., Crowley, T.J., Kinne, S., Raddatz, T.J., Thomas, M.A. & Jungclaus, J.H., 2009, Limited temperature response to the very large AD 1258 volcanic eruption, Geophysical Research Letters, 36, L21708, doi:10.1029/2009GL040083.
  30. Kravitz, B., Robock, A. & Bourassa, A., 2010, Negligible climatic effects from the 2008 Okmok and Kasatochi volcanic eruptions, Journal of Geophysical Research, 115, D00L05, doi:10.1029/2009JD013525.
  31. Oman, L., Robock, A., Stenchikov, G., Schmidt, G.A. & Ruedy, R., 2005, Climatic response to high-latitude volcanic eruptions, Journal of Geophysical Research, 110, D13103, doi:10.1029/2004JD005487.
  32. Graf, H.-F. & Timmreck, C., 2001, A general climate model simulation of the aerosol radiative effects of the Laacher See eruption, Journal of Geophysical Research, 106, 14,747– 14,756. doi:10.1029/2001JD900152
  33. Kravitz, B. & Robock, A., 2011, The climate effects of high latitude volcanic eruptions: the role of time of year, Journal of Geophysical Research, 116, D01105, doi:10.1029/2010JD014448.
  34. Schmidt, A., Carslaw, K.S., Mann, G.W., Wilson, B.M., Breider, T.J., Pickering, S.J. & Thordarson, T., 2010, The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei, Atmospheric Chemistry and Physics Discussion, 10, 3189-3228. doi:10.5194/acp-10-6025-2010
  35. Timmreck, C. & Graf, H.-F., 2006, The initial dispersal and radiative forcing of a Northern Hemisphere mid-latitude super volcano: a model study, Atmospheric Chemistry and Physics, 6, 35-49, doi:10.5194/acp-6-35-2006.
  36. Crowley, T.J., 2000, Causes of climate change over the past 1000 years, Science, 289, 270-277. doi:10.1126/science.289.5477.270
  37. Carey, S. & Sigurdsson, H., 1989, The intensity of plinian eruptions, Bulletin of Volcanology, 51, 28–40. doi:10.1007/BF01086759
  38. Pyle, D.M., 1989, The thickness, volume and grainsize of tephra fall deposits, Bulletin of Volcanology, 51, 1–15. doi:10.1007/BF01086757
  39. Walker, G.P.L., 1980, The Taupo pumice: product of the most powerful known (ultraplinian) eruption? Journal of Volcanology and Geothermal Research, 8, 69–94. doi:10.1016/0377-0273(80)90008-6
  40. Carey, S.N. & Sparks, R.S.J., 1986, Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns, Bulletin of Volcanology, 48, 109–125. doi:10.1007/BF01046546
  41. Turney, C.S.M., Harkness, D.D. & Lowe, J.J., 1997, The use of microtephra to correlate Late-glacial lake sediment successions in Scotland, Journal of Quaternary Science, 12, 525–531. doi: 10.1002/(SICI)1099-1417(199711/12)12:6<525::AID-JQS347>3.0.CO;2-M
  42. Blockley, S.P.E., Lane, C.S., Lotter, A.F. & Pollard, A.M., 2007, Evidence for the presence of the Vedde Ash in Central Europe, Quaternary Science Reviews, 26, 3030–3036. doi:10.1016/j.quascirev.2007.09.010
  43. Pearce, N.J.G., Bendall, C.A. & Westgate, J.A., 2008, Comment on “Some numerical considerations in the geochemical analysis of distal microtephra” by A.M. Pollard, S.P.E. Blockley & C.S. Lane, Applied Geochemistry, 23, 1353–1364. doi:10.1016/j.apgeochem.2006.07.007
  44. Wulf, S., Kraml, M., Brauer, A., Keller, J. & Negendank, J.F.W., 2004, Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy), Quaternary International, 122, 7–30. doi:10.1016/j.quaint.2004.01.028
  45. Devine, J.D., Sigurdsson, H., Davis, A.N. & Self, S., 1984, Estimates of sulfur and chlorine yield to the atmosphere from volcanic eruptions and potential climatic effects, Journal of Geophysical Research, 89(B7), 6309–6325, doi:10.1029/JB089iB07p06309.
  46. Scaillet, B. & Pichavant, M., 2003, Experimental constraints on volatile abundance in arc magmas and their implications for degassing processes, Geological Society, London, Special Publication, 213, 23–52. doi:10.1144/​GSL.SP.2003.213.01.03
  47. Wolff, E.W. et al., 2010, Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core, Quaternary Science Reviews, 29, 285–295. doi:10.1016/j.quascirev.2009.06.013
  48. Hammer, C.U., Clausen, H.B. & Dansgaard, W., 1980, Greenland ice sheet evidence of postglacial volcanism and its climatic impact, Nature, 288, 230–235. doi:10.1038/288230a0
  49. Steffensen, J.P. et al., 2008, High-resolution Greenland ice core data show abrupt climate change happens in a few years, Science, 321, 680–684. doi:10.1126/science.1157707
  50. Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S., Morrison, M., Meese, D.A., Gow, A.J. & Alley, R.B., 1994, Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implications for the volcano-climate system, Science, 264, 948–952. doi:10.1126/science.264.5161.948
  51. Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S. & Twickler, M.S., 1996, A 110,000-yr record of explosive volcanism from the GISP2 (Greenland) ice core, Quaternary Research, 45,109–118. doi:10.1006/qres.1996.0013
  52. Traversi, R. et al., 2009. Sulfate spikes in the deep layers of EPICA-Dome C ice core: evidence of glaciological artifacts. Environmental Science & Technology, 43, 8737–8743. doi: 10.1021/es901426y
  53. Dai, J., Mosley-Thompson, E. & Thompson, L.G., 1991, Ice core evidence for an explosive tropical volcanic eruption 6 years preceding Tambora, Journal of Geophysical Research, 96, 17,361–17,366.
  54. de Silva, S.L. & Zielinski, G.A., 1998, Global influence of the AD 1600 eruption of Huaynaputina, Peru, Nature, 393, 455–458. doi:10.1038/30948
  55. Abbot, P.M. et al., 2011, A detailed framework of Marine Isotope Stages 4 and 5 volcanic events recorded in two Greenland ice-cores, Quaternary Science Reviews, in review.
  56. Gao, C., Robock, A. & Ammann, C., 2008, Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models, Journal of Geophysical Research, 113, D23111, doi:10.1029/2008JD010239.
  57. LaMarche, V.C., Jr. & Hirschboeck, K.K., 1984, Frost rings in trees as records of major volcanic eruptions, Nature, 307, 121–126. doi:10.1038/307121a0
  58. Baillie, M.G.L. & Munro, M.A.R., 1988, Irish tree rings, Santorini and volcanic dust veils, Nature, 332, 344–346. doi:10.1038/332344a0
  59. Salzer, M.W. & Hughes, M.K., 2007, Bristlecone pine tree rings and volcanic eruptions over the last 5000 years, Quaternary Research, 67, 57–68. doi:10.1016/j.yqres.2006.07.004
  60. Briffa, K.R., Jones, P.D., Schweingruber, F.H. & Osborn, T.J., 1998, Influence of volcanic eruptions on Northern Hemisphere summer temperatures over 600 years, Nature, 393, 450–455. doi:10.1038/30943
  61. Briffa, K.R., Osborn, T.J. & Schweingruber, F.H., 2004, Large-scale temperature inferences from tree rings: a review, Global and Planetary Change, 40, 11–26. doi:10.1016/S0921-8181(03)00095-X
  62. Allison, P.M., 2002, Recurring tremors: the continuing impact of the AD 79 eruption of Mt Vesuvius, in R. Torrence and J. Grattan (eds) Natural disasters and cultural change, Routledge, 107–125.
  63. Khalidi, L., Oppenheimer, C., Gratuze, B., Boucetta, S., Sanabani, A. & Al-Mosabi, A., 2010, Obsidian sources in highland Yemen and their relevance to archaeological research in the Red Sea region, Journal of Archaeological Science, 37, 2332–2345. doi:10.1016/j.jas.2010.04.007
  64. Sheets, P., 2008, Armageddon to the Garden of Eden: explosive volcanic eruptions and societal resilience in ancient Middle America, in Sandweiss, D. & Quilter J. (eds.), El niño: catastrophism, and culture change in ancient America, Dumbarton Oaks, Harvard University Press, Washington, D.C., 167–186.
  65. Specht, J. & Torrence, R., 2007, Lapita all over: Land-use on the Willaumez Peninsula, Papua New Guinea, Terra Australis, 26, 71–96.
  66. Torrence, R, Neall, V & Boyd, WE 2009, Volcanism and historical ecology on the Willaumez Peninsula, Papua New Guinea, Pacific Science, 63, 507–535. doi:10.2984/049.063.0404
  67. Parr, J.F., Boyd, W.E., Harriott, V. & Torrence, R., 2009, Human adaptive responses to catastrophic landscape disruptions during the Holocene, Numundo, PNG, Geographical Research, 47, 155–174. doi: 10.1111/j.1745-5871.2008.00553.x
  68. Neall, V.E., Wallace, R.C. & Torrence, R., 2008, The volcanic environment for 40,000 years of human occupation on the Willaumez Isthmus, West New Britain, Papua New Guinea, Journal of Volcanology and Geothermal Research, 176, 330–343. doi:10.1016/j.jvolgeores.2008.01.037
  69. Lentfer, C. & Torrence, R., 2007, Holocene volcanic activity, vegetation succession, and ancient human land use: Unraveling the interactions on Garua Island, Papua New Guinea, Review of Palaeobotany and Palynology, 143, 83–105. doi:10.1016/j.revpalbo.2006.06.007
  70. McKee, C.O., Neall, V.E. & Torrence, R., 2011, A remarkable pulse of large-scale volcanism on New Britain Island, Papua New Guinea, Bulletin of Volcanology, 73, 27-37. doi:10.1007/s00445-010-0401-8
  71. Rodolfo, K.S. & Umbal, J.V., 2008, A prehistoric lahar-dammed lake and eruption of Mount Pinatubo described in a Philippine aborigine legend, Journal of Volcanology and Geothermal Research, 176, 432–437. doi:10.1016/j.jvolgeores.2008.01.030
  72. Frierson, P., 1991, The Burning Island: A journey through myth and history in volcano country, Hawai’i, ed. B. Dean, Nature and Natural Philosophy Library; San Francisco: Sierra Club Books.
  73. Swanson, D.A., 2008, Hawaiian oral tradition describes 400 years of volcanic activity at Kīlauea, Journal of Volcanology and Geothermal Research, 176, 427–431. doi:10.1016/j.jvolgeores.2008.01.033
  74. Mandeville C. W., Webster, J.D., Tappen, C., Taylor, B.E., Timbal, A., Sasaki, A., Hauri, E. & Bacon, C.R., 2009, Stable isotope and petrologic evidence for open-system degassing, Geochimica et Cosmochimica Acta, 73, 2978–3012. doi:10.1016/j.gca.2009.01.019
  75. Clark, E.E., 1953, Indian Legends of the Pacific Northwest., University of California Press, Berkeley.
  76. Symons, G.J. (ed), 1888, The eruption of Krakatoa and subsequent phenomena, Harrison & Sons, London.
  77. von Helmholtz, R., 1883, The remarkable sunsets, Nature, 29, 130. doi:10.1038/029130a0
  78. Lamb, H.H., 1970, Volcanic dust in the atmosphere with a chronology and assessment of its meteorological significance, Philosophical Transactions of the Royal Society of London A, 266, 425-533. doi:10.1098/rsta.1970.0010
  79. Stothers, R.B. & Rampino, M.R., 1983, Volcanic eruptions in the Mediterranean before AD 630 from written and archaeological sources, Journal of Geophysical Research, 88, 6357-6371.
  80. Stothers, R.B., 2002, Cloudy and clear stratospheres before A.D. 1000 inferred from written sources, Journal of Geophysical Research, 107, 4718, doi:10.1029/2002JD002105.
  81. Mellaart, J., 1967, Catal Huyuk a Neolithic town in Anatolia, McGraw Hill, New York.
  82. Meece, S., 2006, A bird’s eye view — of a leopard’s spots: the Çatalhöyük ‘map’ and the development of cartographic representation in prehistory, Anatolian Studies, 56, 1–16.
  83. Zerefos, C.S., Gerogiannis, V.T., Balis, D., Zerefos, S.C. & Kazantzidis, A., 2007, Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings, Atmospheric Chemistry and Physics, 7, 4027-4042. doi:10.5194/acp-7-4027-2007
  84. Wiart, P.A.M. & Oppenheimer, C., 2000, Largest known historic eruption in Africa: Dubbi volcano, Eritrea, 1861, Geology, 28, 291–294. doi:10.1130/0091-7613(2000)28<291:LKHEIA>2.0.CO;2
  85. Schmincke, H.-U., Kutterolf, S., Perez, W., Rausch, J., Freundt, A. & Strauch, W., 2009, Walking through volcanic mud: the 2,100-year-old Acahualinca footprints (Nicaragua), Bulletin of Volcanology, 71, 479–493. doi:10.1007/s00445-008-0235-9
  86. Rampino, M.R., Mass extinctions of life and catastrophic flood basalt volcanism, Proceedings of the National Academy of Sciences of the USA, 107, 6555–6556. doi:10.1073/pnas.1002478107
  87. Campbell, I.H., 2005, Large Igneous Provinces and the mantle plume hypothesis, Elements, 1, 265–269. doi:10.2113/gselements.1.5.265
  88. Bryan, S.E. & Ernst, R.E., 2008, Revised definition of large igneous provinces (LIPs), Earth-Science Reviews, 86, 175–202. doi:10.1016/j.earscirev.2007.08.008
  89. Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S., 2008, Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release, Science, 319, 1654–1657. doi:10.1126/science.1152830
  90. Stothers, R.B., 1993, Flood basalts and extinction events, Geophysical Research Letters, 20, 1399–1402. doi:10.1029/93GL01381
  91. Christenson, G.L., Collins, G.S., Morgan, J.V., Gulick, S.P.S., Barton, P.J. & Warner, M.R., 2009, Mantle deformation beneath the Chicxulub impact crater, Earth and Planetary Science Letters, 284, 249–257. doi:10.1016/j.epsl.2009.04.033
  92. Schulte, P. et al., 2010, The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary, Science, 327, 1214–1218. doi:10.1126/science.1177265
  93. Kring, D.A., 2007, The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary, Palaeogeography, Palaeoclimatology, Palaeoecology, 255, 4–21. doi:10.1016/j.palaeo.2007.02.037
  94. Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., Tantawy, A.-A., & Stüben, D., 2007, Chicxulub impact predates K–T boundary: new evidence from Brazos, Texas, Earth and Planetary Science Letters, 255, 339–356. doi:10.1016/j.epsl.2006.12.026
  95. Chenet, A.-L., Quidelleur, X., Fluteau, F., Courtillot, V. & Bajpai, S., 2007, 40K–40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration, Earth and Planetary Science Letters, 263, 1–15. doi:10.1016/j.epsl.2007.07.011
  96. Schulte, P., Speijer, R.P., Brinkuis, H., Kontny, A., Claeys, P., Galeotti, S. & Smit, J., 2008, Comment on the paper “Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas” by Keller et al. (2007), Earth and Planetary Science Letters, 269, 614–620. doi:10.1016/j.epsl.2007.11.066
  97. Keller, G., Adatte, T., Baum, G. & Berner, Z., 2008, Reply to ‘Chicxulub impact predates K–T boundary: New evidence from Brazos, Texas’ Comment by Schulte et al., Earth and Planetary Science Letters, 269, 621–629. doi:10.1016/j.epsl.2007.12.025
  98. Sills, J. (ed), 2010, Letters, Science, 328, 973–976. doi:10.1126/science.328.5981.973-a & doi:10.1126/science.328.5981.973-b & doi:10.1126/science.328.5981.975 & doi:10.1126/science.328.5981.974-a
  99. Jones, A.P., Price, G.D., Price, N.J., DiCarli, P.S. & Clegg, R.A., 2002. Impact induced melting and the development of large igneous provinces, Earth and Planetary Science Letters, 202, 551–561. doi:10.1016/S0012-821X(02)00824-5
  100. Courtillot, V., and Olsen, P., 2007, Mantle plumes link magnetic superchrons to Phanerozoic mass depletion events, Earth and Planetary Science Letters, 260, 495–504. doi:10.1016/j.epsl.2007.06.003
  101. Knoll, A.H., Bambach, R.K., Payne, J.L., Pruss, S. & Fischer, W.W., 2007, Paleophysiology and end-Permian mass extinction, Earth and Planetary Science Letters, 256, 295–313. doi:10.1016/j.epsl.2007.02.018
  102. Ries, J.B., Cohen, A.L. & McCorkle, D.C., 2009, Marine calcifiers exhibit mixed responses to CO¬2-induced ocean acidification, Geology, 37, 1131–1134. doi:10.1130/G30210A.1
  103. Wille, M., Nägler, T.F., Lehmann, B., Schröder, S. & Kramers, J.D., 2008, Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary, Nature, 453, 767–769. doi:10.1038/nature07072
  104. Whiteside, J.H., Olsen, P.E., Eglington, T., Brookfield, M.E. & Sambrotto, R.N., 2010, Compound-specific carbon isotopes from Earth’s largest flood basalt eruptions directly linked to the end-Triassic mass extinction, Proceedings of the National Academy of Sciences, 107, 6721–6725. doi:10.1073/pnas.1001706107
  105. Cockell, C.S., 1999, Crises and extinction in the fossil record; a role for ultraviolet radiation, Paleobiology, 25, 212–225.
  106. Vogelmann, A.M., Ackerman, T.P. & Turco, R.P., 1992, Enhancements in biologically effective ultraviolet radiation following volcanic eruptions, Nature, 359, 47–49. doi:10.1038/359047a0
  107. Cather, S.M., Dunbar, N., McDowell, F.W., McIntosh, W.C. & Schole, P.A., 2009, Climate forcing by iron fertilization from repeated ignimbrite eruptions: The icehouse–silicic large igneous province (SLIP) hypothesis, Geosphere, 5, 315–324. doi:10.1130/GES00188.1
  108. Stern, R.J., Avigad, D., Miller, N. and Beyth, M., 2008, From volcanic winter to snowball Earth: an alternative explanation for Neoproterozoic biosphere stress, in Y. Dilek et al. (eds.), Links between geological processes, microbial activities & evolution of life, Springer, pp. 313-337. doi:10.1007/978-1-4020-8306-8_10
  109. King, G. & Bailey, G., 2006, Tectonics and human evolution, Antiquity, 80, 265–286.
  110. Ukstins Peate, I., Baker, J.A., Kent, A.J.R., Al-Kadasi, M., Al-Subbary, A., Ayalew, D. & Menzies, N., 2003, Correlation of Indian Ocean tephra to individual Oligocene silicic eruptions from Afro-Arabian flood volcanism, Earth and Planetary Science Letters, 211, 311–327. doi:10.1016/S0012-821X(03)00192-4
  111. Pik, R., Marty, B., Carignan, J., Yirgu, G. & Ayalew, T., 2009, Timing of East African Rift development in southern Ethiopia: Implication for mantle plume activity and evolution of topography, Geology, 36, 167–170. doi:10.1130/G24233A.1
  112. Biggs, J., Anthony, E.Y. & Ebinger, C.J., 2009, Multiple inflation and deflation events at Kenyan volcanoes, East African Rift, Geology, 37, 979–982. doi:10.1130/G30133A.1
  113. Raichlen, D.A., Gordon, A.D., Harcourt-Smith, W.E.H., Foster, A.D. & Haas, W.R. Jr., 2010, Laetoli footprints preserve earliest direct evidence of human-like bipedal biomechanics, PLoS ONE, 5(3): e9769. doi:10.1371/journal.pone.0009769.
  114. Sauer, C.O., 1962, Seashore – primitive home of man? Proceedings of the American Philosophical Society, 106, 41–47.
  115. King, G., Bailey, G. & Sturdy, D., 1994, Active tectonics and human survival strategies, Journal of Geophysical Research, 99(B10), 20,063–20,078, doi:10.1029/94JB00280.
  116. McDougall, I., Brown, F.H., Fleagle, J.G., 2005, Stratigraphic placement and age of modern humans from Kibish, Ethiopia, Nature, 433,733–736. doi:10.1038/nature03258
  117. Basell, L.S., 2008, Middle Stone Age (MSA) site distributions in eastern Africa and their relationship to Quaternary environmental change, refugia and the evolution of Homo sapiens, Quaternary Science Reviews, 27, 2484–2498. doi:10.1016/j.quascirev.2008.09.010
  118. Mohr, P., Mitchell, J.G. & Raynolds, R.G.H., 1980, Quaternary volcanism and faulting at O’a Caldera, Central Ethiopian Rift, Bulletin of Volcanology, 43, 173–189. doi:10.1007/BF02597619
  119. Grün, R. et al., 2005, U-series and ESR analyses of bones and teeth relating to the human burials from Skhul, Journal of Human Evolution, 49, 316–334. doi:10.1016/j.jhevol.2005.04.006
  120. Oppenheimer, S., 2009, The great arc of dispersal of modern humans: Africa to Australia, Quaternary International, 202, 2–13. doi:10.1016/j.quaint.2008.05.015
  121. Endicott, P., Ho, S.Y.W., Metspalu, M. & Stringer, C., 2009, Evaluating the mitochondrial timescale of human evolution, Trends in Ecology and Evolution, 24, 515–521. doi:10.1016/j.tree.2009.04.006
  122. Soares P., Ermini L., Thomson N., Mormina M., Rito T., Röhl A., Salas A., Oppenheimer S., Macaulay V., Richards M.B., 2009, Correcting for purifying selection: an improved human mitochondrial molecular clock, American Journal of Human Genetics, 84, 740–759. doi:10.1016/j.ajhg.2009.05.001
  123. Green, R.E. et al., 2010, A draft sequence of the Neandertal genome, Science, 328, 710–722. doi: 10.1126/science.1188021
  124. Ambrose, S.H., 1998, Late Pleistocene human population bottlenecks, volcanic winter, and differentiation of modern humans, Journal of Human Evolution, 34, 623-651. doi:10.1006/jhev.1998.0219
  125. Rose, W.I. & Chesner, C.A., 1987, Dispersal of ash in the great Toba eruption, 75 ka, Geology, 15, 913–917. doi:10.1130/0091-7613(1987)15<913:DOAITG>2.0.CO;2
  126. Vazquez, J.A. & Reid, M.R., 2004, Probing the accumulation history of the voluminous Toba magma, Science, 305, 991–994. doi:10.1126/science.1096994
  127. Chesner, C.A. & Rose, W.I., 1991, Stratigraphy of the Toba Tuffs and the evolution of the Toba Caldera Complex, Sumatra, Indonesia, Bulletin of Volcanology, 53, 343–356. doi:10.1007/BF00280226
  128. Rose, W.I. & Chesner, C.A., 1990, Worldwide dispersal of ash and gases from earth’s largest known eruption: Toba, Sumatra, 75 kyr, Palaeogeography, Palaeoclimatology, Palaeoecology, 89, 269–275. doi:10.1016/0921-8181(90)90023-6
  129. Baines, P.G. & Sparks, R.S.J., 2005, Dynamics of giant volcanic ash clouds from supervolcanic eruptions, Geophysical Research Letters, 32, L24808, doi:10.1029/2005GL024597.
  130. Herzog, M. & Graf, H.-F., 2010, Applying the three-dimensional model ATHAM to volcanic plumes: Dynamic of large co-ignimbrite eruptions and associated injection heights for volcanic gases, Geophysical Research Letters, 37, L19807, doi:10.1029/2010GL044986.
  131. Ledbetter, M. & Sparks, R.S.J., 1979, Duration of large-magnitude explosive eruptions deduced from graded bedding in deep-sea ash layers, Geology, 7, 240–244. doi:10.1130/0091-7613(1979)​7<240:DOLEED>​2.0.CO;2
  132. Carey, S., 1997, Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea, Geology, 25, 839–842. doi:10.1130/0091-7613(1997)025<0839:IOCSOT>2.3.CO;2
  133. Weisner, M., Wang, Y. & Zheng, L., 1995, Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo, Philippines, Geology, 23, 885–888. doi:10.1130/0091-7613(1995)023<0885:FOVATT>2.3.CO;2
  134. Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S., Twickler, M.S. & Taylor, K., 1996, Potential atmospheric impact of the Toba mega-eruption ~71,000 years ago, Geophysical Research Letters,23(8), 837–840, doi:10.1029/96GL00706.
  135. Scaillet, B., Clemente, B., Evans, B.W. & Pichavant, M., 1998, Redox control of sulphur degassing in silicic magmas, Journal of Geophysical Research, 103, 23,937–23,949. doi:10.1029/98JB02301
  136. Chesner, C.A. & Luhr, J.F., 2010, A melt inclusion study of the Toba Tuffs, Sumatra, Indonesia, Journal of Volcanology and Geothermal Research, 197, 259-278, doi:10.1016/j.jvolgeores.2010.06.001.
  137. Niemeier, U., Timmreck, C., Graf, H.-F., Kinne, S., Rast, S. & Self, S., 2009, Initial fate of fine ash and sulfur from large volcanic eruptions, Atmospheric Chemistry and Physics, 9, 9043-9057, doi:10.5194/acp-9-9043-2009.
  138. Rampino, M.R. & Self, S., 1992, Volcanic winter and accelerated glaciation following the Toba super-eruption, Nature, 359, 50–52. doi:10.1038/359050a0
  139. Rampino, M.R. & Ambrose, S.H., 2000, Volcanic winter in the Garden of Eden: the Toba super-eruption and the Late Pleistocene human population crash, Geological Society of America Special Paper, 345, 71–82. doi:10.1130/0-8137-2345-0.71
  140. Rampino, M.R. & Self, S., 1993, Climate-volcanism feedback and the Toba eruption of ~74,000 years ago, Quaternary Research, 40, 269–280. doi:10.1006/qres.1993.1081
  141. Jones, G.S., Gregory, J.M., Stott, P.A., Tett, S.F. & Thorpe, R.B., 2005, An AOGCM simulation of the climate response to a volcanic super-eruption, Climate Dynamics, 25, 725–738. doi:10.1007/s00382-005-0066-8
  142. Robock, A., Ammann, C.M., Oman, L., Shindell, D., Levis, S. & Stenchikov, G., 2009, Did the Toba volcanic eruption of ~74 ka B.P. produce widespread glaciation? Journal of Geophysical Research, 114, D10107, doi:10.1029/2008JD011652.
  143. Timmreck, C., Graf, H.-FLorenz, S.J., Matei, D., Niemeier, U., Zanchettin, D., Matei, D., Jungclaus, J.H. & Crowley, T.J., 2010, Aerosol size confines climate response to volcanic super-eruptions, Geophysical Research Letters, 37, L24705, doi:10.1029/2010GL045464.
  144. Williams, M.A J., Ambrose, S.H., van der Kaars, S., Ruehlemann, C., Chattopadhyaya, U., Pal, J. & Chauhan, P., 2009, Environmental impact of the 73 ka Toba super-eruption in South Asia, Palaeogeography, Palaeoclimatology, and Palaeoecology, 284:295–314. doi:10.1016/j.palaeo.2009.10.009
  145. Ambrose, S.H., 2003, Did the super-eruption of Toba cause a human population bottleneck? Reply to Gathorne-Hardy and Harcourt-Smith, Journal of Human Evolution, 45, 231–237. doi:10.1016/j.jhevol.2003.08.001
  146. Rossano, M.J., 2009, Ritual behaviour and the origins of modern cognition, Cambridge Archaeological Journal, 19, 243–256. doi:10.1017/S0959774309000298
  147. Gagneux, P., Wills, C., Gerloff, U., Tautz, D., Morin, P.A., Boesch, C., Fruth, B., Hohmann, G., Ryder, O.A. & Woodruff, D.S., 1999, Mitochondrial sequences show diverse evolutionary histories of African hominoids, Proceedings of the National Academy of Sciences, 96, 5077–5082. doi:10.1073/pnas.96.9.5077
  148. Louys, J., 2007, Limited effect of the Quaternary’s largest super-eruption (Toba) on land mammals from Southeast Asia, Quaternary Science Reviews, 26, 3108–3117. doi:10.1016/j.quascirev.2007.09.008
  149. Brumm, A., Jensen, G.M., van den Bergh, G.D., Morwood, M.J., Kurniawan, I., Aziz, F. & Storey, M., 2010, Hominins on Flores, Indonesia, by one million years ago, Nature, 464, 748–752. doi:10.1038/nature08844
  150. Jones, S.C., 2010, Palaeoenvironmental response to the ∼74 ka Toba ash-fall in the Jurreru and Middle Son valleys in southern and north-central India, Quaternary Research, 73, 336–350. doi:10.1016/j.yqres.2009.11.005
  151. Haslam, M., Clarkson, C., Petraglia, M., Korisettar, R., Jones, S., Shipton, C., Ditchfield, P. & Ambrose, S.H., 2010, The 74 ka Toba super-eruption and southern Indian hominins: archaeology, lithic technology and environments at Jwalapuram Locality 3, Journal of Archaeological Science, 37, 3370-3384, doi:10.1016/j.jas.2010.07.034.
  152. Riede, F., 2008, The Laacher See-eruption (12,920 BP) and material culture change at the end of the Allerød in Northern Europe, Journal of Archaeological Science, 35, 591–599. doi:10.1016/j.jas.2007.05.007
  153. Banks, W.E., d’Errico, F., Peterson, A.T., Kageyama, M., Sima, A. & Sánchez-Goñi, F., 2008, Neanderthal extinction by competitive exclusion, PLoS ONE, 3(12), e3972. doi:10.1371/journal.pone.0003972.
  154. Chazan, M., 2010, Technological perspectives on the Upper Paleolithic. Evolutionary Anthropology, 19, 57–65. doi: 10.1002/evan.20247
  155. Sinitsyn, A.A., 2003, A Palaeolithic ‘Pompeii’ at Kostenki, Russia, Antiquity, 77, 9–14.
  156. Hoffecker J.F. et al., 2008, From the Bay of Naples to the River Don: the Campanian Ignimbrite eruption and the Middle to Upper Paleolithic transition in Eastern Europe, Journal of Human Evolution, 55, 858–870. doi:10.1016/j.jhevol.2008.08.018
  157. Fedele, F.G., Giaccio, B. & Hajdas, I., 2008, Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite eruption, Western Eurasia, Journal of Human Evolution, 55, 834–857. doi:10.1016/j.jhevol.2008.08.012
  158. Fedele, F. G., Giaccio, B., Isaia, R. & Orsi, G., 2002, Ecosystem impact of the Campanian Ignimbrite eruption in Late Pleistocene Europe, Quaternary Research, 57: 420–424. doi:10.1006/qres.2002.2331
  159. Golovanova, L.V., Doronichev, V.B., Cleghorn, N.E., Koulkova, M.A., Sapelko, T.V. & Shackley, M.S., 2010, Significance of ecological factors in the Middle to Upper Paleolithic Transition, Current Anthropology, 51, 655–691. doi:10.1086/656185
  160. Schmincke, H.-U., Park, C. & Harms, E., 2009, Evolution and environmental impacts of the eruption of Laacher See volcano (Germany) 12 900 a BP, Quaternary International, 61, 61–72. doi:10.1016/S1040-6182(99)00017-8
  161. Baales, M., 2006, Final Palaeolithic environment and archaeology in the Central Rhineland (Rhineland-Palatinat, western Germany): conclusions of the last 15 years of research, L’Anthropologie, 110, 418–444.
  162. Graf, H.-F. & Timmreck, C., 2001, A general climate model simulation of the aerosol radiative effects of the Laacher See eruption (10,900 B.C.), Journal of Geophysical Research, 106, 14,747–14,756, doi:10.1029/2001JD900152.
  163. de Klerk, P., Janke, W., Kühn, P. & Theuerkauf, M., 2008, Environmental impact of the Laacher See eruption at a large distance from the volcano: Integrated palaeoecological studies from Vorpommern (NE Germany), Palaeogeography, Palaeoclimatology, Palaeoecology, 270, 196–214. doi:10.1016/j.palaeo.2008.09.013
  164. Henrich, J., 2004, Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case, American Antiquity, 69, 197–214.
  165. Powell, A., Shennan, S. & Thomas, M.G., 2009, Late Pleistocene demography and the appearance of modern human behaviour, Science, 324, 1298–1301. doi:10.1126/science.1170165
  166. Sigurdsson, H. et al., 2006. Marine investigations of Greece’s Santorini volcanic field. EOS Transactions of the American Geophysical Union 87, 337–342. doi:10.1029/2006EO340001.
  167. Bietak, M., 2004, Review of Manning’s “A test of time”, Bibliotheca Orientalis 61, 200–222.
  168. Ramsey, C. B., Manning, S. W. & Galimberti, M. (2004). Dating the volcanic eruption at Thera, Radiocarbon, 46: 325–344.
  169. Friedrich, W.L., Kromer, B., Friedrich, M., Heinemeier, J., Pfeiffer, T. & Talamo, S., 2006, Santorini eruption radiocarbon dated to 1627–1600 B.C., Science 312, 548. doi:10.1126/science.1125087
  170. Bronk Ramsey, C., Dee, M.W., Rowland, J.M., Higham, T.F.G., Harris, S.A., Brock, F., Quiles, A., Wild, E.M., Marcus, E.S. & Shortland, A.J., 2010, Radiocarbon-based chronology for Dynastic Egypt, Science, 328, 1554–1557. doi:10.1126/science.1189395
  171. Pearson, C.L., Dale, D.S., Brewer, P.W., Kuniholm, P.I., Lipton, J. & Manning, S.W., 2009, Dendrochemical analysis of a tree-ring growth anomaly associated with the Late Bronze Age eruption of Thera, Journal of Archaeological Science, 36, 1206–1214. doi:10.1016/j.jas.2009.01.009
  172. Wiener, M.H. & Allen, J.P., 1998, Separate lives: The Ahmose Tempest Stela and the Theran eruption, Journal of Near Eastern Studies, 57, 1–28.
  173. McCoy, F.W. & Heiken, G., 2000, Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece, Pure and Applied Geophysics 157, 1227–1256. doi:10.1007/s000240050024
  174. Bruins, H.J., MacGillivray, J.A., Synolakis, C.E., Benjamini, C., Keller, J., Kisch, H.J., Klügel, A. & van der Plicht, J., 2008, Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini, Journal of Archaeological Science, 35, 191–212. doi:10.1016/j.jas.2007.08.017
  175. Driessen, J., 2002, Towards an archaeology of crisis: defining the long-term impact of the Bronze Age Santorini eruption, in R. Torrence and J. Grattan (eds) Natural disasters and cultural change, Routledge, 250–263.
  176. Bicknell, P., 2000, Late Minoan IB ware, the marine environment of the Aegean and the Bronze Age eruption of Thera volcano, in W.J. McGuire, D.R. Griffiths, P.L. Hancock and I.S. Stewart (eds) The archaeology of geological catastrophes, Geological Society, London, Special Publications 171, 95–103. doi:10.1144/​GSL.SP.2000.171.01.09
  177. Plunket, P. & Uruñuela, G., 1998, Preclassic household patterns preserved under volcanic ash at Tetimpa, Puebla. Latin American Antiquity 9, 287–309.
  178. Plunket, P. & Uruñuela, G., 2000, The quick and the dead: decision making in the abandonment of Tetimpa, Mayab 13, 78–87.
  179. Plunket, P. & Uruñuela, G., 2008, Mountain of sustenance, mountain of destruction: The prehispanic experience with Popocatépetl Volcano, Journal of Volcanology and Geothermal Research 170, 111–120. doi:10.1016/j.jvolgeores.2007.09.012
  180. Plunket, P. & Uruñuela, G., 2006. Social and cultural consequences of a late Holocene eruption in central Mexico. Quaternary International 151, 19–28. doi:10.1016/j.quaint.2006.01.012
  181. Plunket, P. and Uruñuela, G., 1998. Appeasing the volcano gods. Archaeology 54, 36–42.
  182. Panfil, M.S., Gardner, T.W. & Hirth, K.G., 1999, Late Holocene stratigraphy of the Tetimpa archaeological sites, northeast flank of Popocatépetl Volcano, Central Mexico, Geological Society of America Bulletin, 111, 204–218. doi:10.1130/0016-7606(1999)111<0204:LHSOTT>2.3.CO;2
  183. Kutterolf, S., Freundt, A. & Peréz, W., 2008, Pacific offshore record of plinian arc volcanism in Central America: 2. Tephra volumes and erupted masses, Geochemistry Geophysics Geosystems, 9, Q02S02, doi:10.1029/2007GC001791.
  184. Mehringer, P.J., Sarna-Wojcicki, A.M., Wollwage, L.K., & Sheets, P., 2005, Age and extent of the Ilopango TBJ Tephra inferred from a Holocene chronostratigraphic reference section, Lago de Yojoa, Honduras, Quaternary Research 63, 199–205. doi:10.1016/j.yqres.2004.09.011
  185. Dull, R.A., 2004, An 8000-year record of vegetation, climate, and human disturbance from the Sierra de Apaneca, El Salvador, Quaternary Research 61, 159–167. doi:10.1016/j.yqres.2004.01.002
  186. Price, T.D., Burton, J.H., Sharer, R.J., Buikstra, J.E., Wright, L.E., Traxler, L.P. & Miller, K.A., 2010, Kings and commoners at Copan: isotopic evidence for origins and movement in the Classic Maya period, Journal of Anthropological Archaeology, 29, 15–32. doi:10.1016/j.jaa.2009.10.001
  187. Dull, R.A., Southon, J.R. & Sheets, P., 2001, Volcanism, ecology and culture: a reassessment of the Volcán Ilopango TBJ eruption in the southern Maya realm, Latin American Antiquity 12, 25–44.
  188. Pfister, C., 2010, The vulnerability of past societies to climatic variation: a new focus for historical climatology in the twenty-first century, Climatic Change, 200, 25–31. doi:10.1007/s10584-010-9829-2
  189. Stothers, R.B., 1984, Mystery cloud of AD 536, Nature, 344–345. doi:10.1038/307344a0
  190. Larsen, L.B. et al., 2008, New ice core evidence for a volcanic cause of the A.D. 536 dust veil, Geophysical Research Letters, 35, L04708, doi:10.1029/2007GL032450.
  191. Dull, R., Southon, J.R., Kutterolf, S., Freundt, A., Wahl, D. & Sheets, P., 2010, Did the TBJ Ilopango eruption cause the AD 536 event? American Geophysical Union Abstract.
  192. Drancourt, M., et al., 2004, Genotyping, Orientalis-like Yersinia pestis, and plague pandemics, Emerging Infectious Diseases, 10, 1585–1592.
  193. Heather, P., 1995, The Huns and the end of the Roman Empire in Western Europe, The English Historical Review, 110, 4–41.
  194. Dijkstra, J.H.F., 2004, A cult of Isis at Philae after Justinian? Reconsidering P. Cair. Masp. I 67004, Zeitschrift für Papyrologie und Epigraphik, 146, 137–154.
  195. Sarris, P., 2002, The Justinianic plague: origins and effects, Continuity and Change, 17, 169–182. doi:10.1017/S0268416002004137
  196. Baillie, M.G.L., 1994, Dendrochronology raises questions about the nature of the AD 536 dust-veil event, The Holocene, 4, 212–217. doi:10.1177/095968369400400211
  197. Fei, J., Zhou, J., & Hou, Y., 2007, Circa A.D. 626 volcanic eruption, climatic cooling, and the collapse of the Eastern Turkic Empire, Climatic Change, 81, 469–475. doi:10.1007/s10584-006-9199-y
  198. Palais, J.M., Germani, M.S. & Zielinski, G.A., 1992, Interhemispheric transport of volcanic ash from a 1259 A.D. volcanic eruption to the Greenland and Antarctic ice sheets, Geophysical Research Letters, 19, 801–804.
  199. Kellerhals, T., Tobler, L., Brütsch, S., Sigl, M., Wacker, L., Gäggeler, H.W., & Schwikowski, M., 2010, Thallium as a tracer for preindustrial volcanic eruptions in an ice core record from Illimani, Bolivia, Environmental Science and Technology, 44, 888–893. doi:10.1021/es902492n
  200. Mothes, P.A. & Hall, M.L., 2008, The plinian fallout associated with Quilotoa’s 800 yr BP eruption, Ecuadorian Andes, Journal of Volcanology and Geothermal Research, 176, 56–69. doi:10.1016/j.jvolgeores.2008.05.018
  201. Stothers, R.B., 2000, Climatic and demographic consequences of the massive volcanic eruption of 1258, Climatic Change, 45, 361–374. doi:10.1023/A:1005523330643
  202. Jones P.D., Briffa K.R., Barnett T.P. & Tett, S.F.B., 1998, High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures, The Holocene, 8, 455–471. doi:10.1191/095968398667194956
  203. Emile-Geay, J., Seager, R., Cane, M.A., Cook, E.R. & Haug, G.H., 2008, Volcanoes and ENSO over the past millennium, Journal of Climate, 21, 3134–3148. doi:10.1175/2007JCLI1884.1
  204. Crowley, T. J., Zielinski, G., Vinther, B., Udisti, R., Kreutz, K., Cole‐Dai, J. & Castellano, E., 2008, Volcanism and the Little Ice Age, PAGES News, 16, 22–23
  205. Schneider, D. P., Ammann, C.M., Otto-Bliesner, B.L. & Kaufman, S.S., 2009, Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model, Journal of Geophysical Research, 114, D15101, doi:10.1029/2008JD011222
  206. Jackson, P., 1978, The dissolution of the Mongol empire, Central Asiatic Journal, 22, 186–244. Also published in Jackson, P., 2009, Studies on the Mongol Empire and early Muslim India, Variorum Collected Studies Series, ISBN 978 0 7546 5988 4.
  207. Morgan, D., 2009, The decline and fall of the Mongol Empire, Journal of the Royal Asiatic Society, 19, 427–437. doi:10.1017/S1356186309990046
  208. D’Arrigo, R., Jacoby, G., Frank, D. & Pederson, N., 2001, Spatial response to major volcanic events on or about AD 536, 934 and 1258: frost rings and other dendrochronological evidence form Mongolia, Climatic Change, 49, 239–246. doi:10.1023/A:1010727122905
  209. Fletcher, J., 1986, The Mongols: ecological and social perspectives, Harvard Journal of Asiatic Studies, 46, 11–50.
  210. Thordarson, Th. & Larsen, G., 2007, Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history, Journal of Geodynamics, 43, 118–152. doi:10.1016/j.jog.2006.09.005
  211. Thordarson, Th., Larsen, G., Steinþórsson, S. & Self, S., 2003, The 1783–1785 A.D. Laki-Grímsvötn eruptions II: Appraisal based on contemporary accounts, Jökull, 53, 11–48.
  212. Thordarson, Th. & Self, S., 1993, The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785, Bulletin of Volcanology, 55, 233–263. doi:10.1007/BF00624353
  213. Guilbaurd, M.-N., Self, S., Thordarson, Th. & Blake, S., 2005, Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784, Geological Society of America Special Papers, 396, 81–102. doi:10.1130/0-8137-2396-5.81
  214. Hamilton, C.W., Thordarson, Th. & Fagents, S.A., 2010, Explosive lava–water interactions I: architecture and emplacement chronology of volcanic rootless cone groups in the 1783–1784 Laki lava flow, Iceland, Bulletin of Volcanology, 72, 449–467. doi:10.1007/s00445-009-0330-6
  215. Thordarson, Th. & Self, S., 2003, Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment, Journal of Geophysical Research, 108(D1), 4011, doi:10.1029/2001JD002042.
  216. Franklin, B., 1785, Meteorological imaginations and conjectures, (Read 22 December 1784), Memoirs of the Literary and Philosophical Society of Manchester, 2, 373–377.
  217. van Swinden, 1785, Observationes nebulam, quae mense Junio 1783 Apparuit, specantes in Ephemerides Societatis Meteorologicae Palatinae, translated by Linteman S. & Thordarson, T., Jökull, 50, 73–80.
  218. http://hadobs.metoffice.com/hadcet/
  219. D’Arrigo,R., Mashig, E., Frank, D., Jacoby, G. & Wilson, R., 2004, Reconstructed warm season temperatures for Nome,Seward Peninsula, Alaska, Geophysical Research Letters, 31, L09202, doi:10.1029/2004GL019756.
  220. Grattan, J., Brayshay, M. & Sadler, J., 1998, Modelling the distal impacts of past volcanic gas emissions, Quaternaire, 9, 25–35.
  221. Brázdil, R., Demarée, G.R., Deutsch, M., Garnier, E., Kiss, A., Luterbacher, J.,Macdonald, N., Rohr, C., Dobrovolný, P., Kolář, P., & Chromá, K., 2010, European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’, Theoretical and Applied Climatology, 100, 163–189. doi:10.1007/s00704-009-0170-5
  222. Elleder, L., 2010, Reconstruction of the 1784 flood hydrograph for the Vltava River in Prague, Czech Republic, Global and Planetary Change, 70, 117–124.
  223. Oman, L., Robock, A., Stenchikov, G.L., Thordarson, Th., Koch, D., Shindell, T. & Gao, C., 2006, Modeling the distribution of the volcanic aerosol cloud from the 1783–1784 Laki eruption, Journal of Geophysical Research, 111, D12209, doi:10.1029/2005JD006899.
  224. Oman, L., Robock, A., Stenchikov, G.L. & Thordarson, Th., 2006, High-latitude eruptions cast shadow over the African monsoon and the flow of the Nile, Geophysical Research Letters, 33, L18711, doi:10.1029/2006GL027665
  225. Eggertsson, T., 1998, Sources of risk, institutions for survival, and a game against nature in premodern Iceland, Explorations in economic history, 35, 1–30. doi:10.1006/exeh.1997.0686
  226. Eggertsson, T., 1996, No experiments, monumental disasters: Why it took a thousand years to develop a specialized fishing industry in Iceland, Journal of Economic Behavior & Organisation, 30, 1–23. doi:10.1016/S0167-2681(96)00839-6
  227. Thorarinsson, S., 1979, On the damage caused by volcanic eruptions with special reference to tephra and gases. In Sheets, P.D. & Grayson, D.K. (eds), Volcanic Activity and Human Ecology, Academic Press, New York, 125–160.
  228. Vasey, D.E., 1991, Population, agriculture, and famine – Iceland, 1784–1785, Human Ecology, 19, 323–350. doi:10.1007/BF00888981
  229. Wrigley, E.A. & Schofield, R.S., 1989, The population history of England 1541–1871: a reconstruction, Cambridge University Press, ISBN-10: 0521356881.
  230. Whitam, C.S. & Oppenheimer, C., 2005, Mortality in England during the 1783–4 Laki Craters eruption, Bulletin of Volcanology, 67, 15–26. doi:10.1007/s00445-004-0357-7
  231. Grattan, J., Rabartin, R., Self, S. & Thordarson, Th., 2005, Volcanic air pollution and mortality in France 1783–1784, Comptes Rendus Geosciences, 337, 641–651.
  232. Carus, W., 1847, Memoirs of the life of the Rev. Charles Simeon, Hatchard and Son, London, 847 pp.
  233. Volney, M.C.-F., 1787, Travels through Syria and Egypt in the years 1783, 1784, and 1785, G.G.J. & J. Robinson, London.
  234. Grove, R.H., 2007, The great El Niño of 1789–93 and its global consequences: reconstructing an extreme climate event in world environmental history, The Medieval History Journal, 10, 75–98. doi:10.1177/097194580701000203
  235. Yasui, M. & Koyaguchi, T., 2004, Sequence and eruptive style of the 1783 eruption of Asama Volcano, central Japan: a case study of an andesitic explosive eruption generating fountain-fed lava flow, pumice fall, scoria flow and forming a cone, Bulletin of Volcanology, 66, 243–262. doi:10.1007/s00445-003-0308-8
  236. Le Roy Ladurie, E. & Daux, V., 2008, The climate in Burgundy and elsewhere, from the fourteenth to the twentieth century, Interdisciplinary Science Reviews, 33, 10–24. doi:10.1179/030801808X260013
  237. Kington, J.A., 1980, Daily weather mapping from 1781: a detailed synoptic examination of weather and climate during the decade leading up to the French Revolution, Climatic Change, 3, 7–36. doi:10.1007/BF00144983
  238. Thordarson, Th., Miller, D.J., Larsen, G., Self, S. & Sigurdsson, H., 2001, New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland, Journal of Volcanology and Geothermal Research, 108, 33–54. doi:10.1016/S0377-0273(00)00277-8
  239. Stanza from an epic poem (syair) from Sumbawa compiled in Malay around 1830. Chambert-Loir, H. (ed), 1982, Syair kerajaan Bima, Ecole Francaise d’Extrême-Orient, Jakarta and Bandung.
  240. de Jong Boers, B., 1995, Mount Tambora in 1815: A volcanic eruption in Indonesia and its aftermath, Indonesia, 60, 37–60.
  241. Radermacher, Korte beschrijving van het eiland Celebes ende eilanden Floris, Sumbauwa, Lombok en Bali, 1786, p. 186. Translated in [240].
  242. Raffles, T.S., 1817, The history of Java, Black, Parbury & Allen, London.
  243. Raffles, S., 1830, Memoir of the life and public services of Sir Thomas Stamford Raffles, F.R.S. &c., particularly in the government of Java, 1811–1816, and of Bencoolen and its dependencies, 1817–1824: with details of the commerce and resources of the eastern archipelago, and selections from his correspondence, John Murray, London.
  244. Crawfurd, J., 1856, A descriptive dictionary of the Indian Islands and adjacent countries, Bradbury and Evans, London.
  245. Sigurdsson, H. & Carey, S., 1989, Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano, Bulletin of Volcanology, 51, 243–270. doi:10.1007/BF01073515
  246. Self, S., Rampino, M.R., Newton, M.S. & Wolff, J.A., 1984, Volcanological study of the great Tambora eruption of 1815, Geology, 12, 659–663. doi:10.1130/0091-7613(1984)12<659:VSOTGT>2.0.CO;2
  247. Self, S., Gertisser, R., Thordarson, T., Rampino, M.R. & Wolff, J.A., 2004, Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora, Geophysical Research Letters, 31, L20608, doi:10.1029/2004GL020925.
  248. Baron, W.R., 1992, 1816 in perspective: the view from the northeastern United States, in Harington, C.R. (ed), The year without a summer? World climate in 1816, Canadian Museum of Nature, Ottawa, 124–144.
  249. Stommel, H.M. & Stommel, E., 1983, Volcano weather: the story of 1816, the year without a summer, Seven Seas Press, Newport, Rhode Island, 177pp.
  250. Dewey, 1821, Results of meteorological observations made at Williamstown, Massachusetts, Memoirs of the American Academy of Arts and Sciences, 4, 387–392.
  251. Surmieda, M.R. et al., 1992, Surveillance in evacuation camps after the eruption of Mt. Pinatubo, Philippines, CDC Surveillance Summaries, CDC Morbidity and Mortality Weekly Report, 41(SS–4), 9–12.
  252. Petroeschevsky, W.A., 1949, Tijdschrift van het K. Nederlandsch Aardrijkskundig Genootschap: Amsterdam Series 2, 66, 688–703.
  253. Goethals, P.R., 1961, Aspects of local government in a Sumbawan village (Eastern Indonesia), Cornell Modern Indonesia Project, Cornell University Southeast Asia Program.
  254. Fries, A.L., 1947, Records of the Moravians in North Carolina 1752–1879, A.L. Fries (ed), Raleigh, 7, 3294–3313.
  255. Clausewitz, C. von, 1922, Politische Schriften und Briefe, ed. by Hans Rothfels, Munich, 1922, 189–191.
  256. Pant, G.B., Parthasarathy, B. & Sontakke, N.A., 1992, Climate over India during the first quarter of the nineteenth Century, in Harington, C.R. (ed), The year without a summer? World climate in 1816, Canadian Museum of Nature, Ottawa, 429–435.
  257. Harty, W., 1820, An historic sketch of the causes, progress, extent, and mortality of the contagious fever epidemic in Ireland during the years 1817, 1818 and 1819, Dublin 1820, Royal Geographical Society, Manuscripts Collection, London, United Kingdom, 113–115.
  258. Webb, P., 2002, Emergency relief during Europe’s famine of 1817 anticipated crisis-response mechanisms of today, The Journal of Nutrition, 132, 2092S–2095S.
  259. Beck, U., 2009, World risk society, Polity Press.
  260. Adger, W.N., Hughes, T.P., Folke, C., Carpenter, S.R. & Rockström, J., 2005, Social-ecological resilience to coastal disasters, Science, 309, 1036–1039. doi:10.1126/science.1112122
  261. Self, S. & Blake, S., 2008, Consequences of explosive supereruptions, Elements, 4, 41–46. doi:10.2113/GSELEMENTS.4.1.41
  262. Chu, R., Helmberger, D.V., Sun, D., Jackson, J.M. & Zhu, L., 2010, Mushy magma beneath Yellowstone, Geophysical Research Letters, 37, L01306, doi:10.1029/2009GL041656.
  263. Wilson, C.J.N. & Hildreth, W., 1997, The Bishop Tuff: new insights from eruptive stratigraphy, The Journal of Geology, 105, 407–440.
  264. Jones, M.T., Sparks, R.S.J. & Valdes, P.J., 2007, The climatic impact of supervolcanic ash blankets, Climate Dynamics, 29, 553–564. doi:10.1007/s00382-007-0248-7
  265. Rampino, M.R., 2002, Supereruptions as a threat to civilizations on Earth-like planets, Icarus, 156, 562–569.
  266. White, G.F. & Haas, J.E., 1975, Assessment of research on natural hazards. MIT Press, Cambridge MA.
  267. Button, G., 2010, Disaster culture: knowledge and uncertainty in the wake of human and environmental catastrophe, Left Coast Press, Inc., ISBN: 978-1-59874-389-0.
  268. Aspinall, W.P., Woo, G., Voight, B.V. & Baxter, P.J., 2003, Evidence-based volcanology: application to eruption crises, Journal of Volcanology and Geothermal Research, 128, 273–285. doi:10.1016/S0377-0273(03)00260-9
  269. Sornette, D., 2009, Dragon kings, black swans and the prediction of crises, International Journal of Terraspace Science and Engineering, 2, 1–18.
  270. Deligne, N.I., Coles, S.G. & Sparks, R.S.J., 2010, Recurrence rates of large explosive volcanic eruptions, Journal of Geophysical Research, 115, B06203, doi:10.1029/2009JB006554.
  271. Pappalardo, L., Ottolini, L. & Mastrolorenzo, G., 2008, The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal, Contributions to Mineralogy and Petrology, 156, 1–26. doi:10.1007/s00410-007-0270-0
  272. Woo, G., 2008, Probabilistic criteria for volcano evacuation decisions, Natural Hazards, 45, 87–97. doi:10.1007/s11069-007-9171-9
  273. Wigley,T.M.L., 2006, A combined mitigation/geoengineering approach to climate stabilization, Science, 314, 452–454. doi:10.1126/science.1131728
  274. Robock, A., 2008, 20 reasons why geoengineering may be a bad idea, Bulletin of the Atomic Scientists, 64, 14–18. doi:10.2968/064002006
  275. http://www.thebulletin.org/web-edition/roundtables/has-the-time-come-geoengineering
  276. Robock, A., Bunzl, M., Kravitz, B. & Stenchiko, G.L., 2010, A test for geoengineering? Science, 327, 530–531. doi:10.1126/science.1186237
  277. Rampino, M.R., Self, S. & Fairbridge, R.W., 1979, Can rapid climate change cause volcanic eruptions? Science, 206, 826–829. doi:10.1126/science.206.4420.826
  278. Huybers, P. & Langmuir, C., 2009, Feedback between deglaciation, volcanism, and atmospheric CO2, Earth and Planetary Science Letters, 286, 479–491. doi:10.1016/j.epsl.2009.07.014
  279. Maclennan, J., Jull, M., McKenzie, D., Slater, L. & Grönvold, K., 2002, The link between volcanism and deglaciation in Iceland, Geochemistry Geophysics Geosystems, 3(11), 1062, doi:10.1029/2001GC000282.
  280. Nakada M. & Yokose H., 1992, Ice age as a trigger of active Quaternary volcanism and tectonism, Tectonophysics, 212, 321–329. doi:10.1016/0040-1951(92)90298-K
  281. Tuffen, H., 2010, How will melting of ice affect volcanic hazards in the twenty-first century? Philosophical Transactions of the Royal Society A, 368, 2535–2558. doi:10.1098/rsta.2010.0063
  282. Stelling, P., Gardner, J.E. & Begét, J., 2005, Eruptive history of Fisher Caldera, Alaska, USA, Journal of Volcanology and Geothermal Research, 139, 163–183. doi:10.1016/j.jvolgeores.2004.08.006
  283. Ponomareva, V.V. et al., The 7600 (14C) year BP Kurile Lake caldera-forming eruption, Kamchatka, Russia: stratigraphy and field relationships, Journal of Volcanology and Geothermal Research, 136, 199–222. doi:10.1016/j.jvolgeores.2004.05.013
  284. Maeno, F. & Taniguchi, H., 2007, Spatiotemporal evolution of a marine caldera-forming eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, Japan: implication from near-vent eruptive deposits, Journal of Volcanology and Geothermal Research, 167, 212–238. doi:10.1016/j.jvolgeores.2007.05.003
  285. Bacon, C.R. & Lanphere, M.A., 2006, Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon, Geological Society of America Bulletin, 118, 1331–135. doi:10.1130/B25906.1
  286. Witter, J.B. & Self, S., 2006, The Kuwae (Vanuatu) Eruption of AD 1452: potential magnitude and volatile release, Bulletin of Volcanology, 69, 301–318. doi:10.1007/s00445-006-0075-4
  287. Druitt, T. H., Edwards, L., Mellors, R. M., Pyle, D. M., Sparks, R. S. J., Lanphere, M., Davies, M. & Barreiro, B., 1999, Santorini Volcano, Geological Society of London, Memoir, 19.
  288. Macdonald, R. & Scaillet, B., 2006, The central Kenya peralkaline province: Insights into the evolution of peralkaline salic magmas, Lithos, 91, 59–73. doi:10.1016/j.lithos.2006.03.009
  289. Burgisser A, 2005. Physical volcanology of the 2,050 BP caldera-forming eruption of Okmok caldera, Alaska, Bulletin of Volcanology, 67, 497–525. doi:10.1007/s00445-004-0391-5
  290. Robin C, Eissen J-P, & Monzier M, 1993. Giant tuff cone and 12-km-wide associated caldera at Ambrym volcano (Vanuatu, New Hebrides arc), Journal of Volcanology and Geothermal Research, 55, 225–238 doi:10.1016/0377-0273(93)90039-T
  291. Horn S, Schmincke H-U. 2000. Volatile emissions during the eruption of Baitoushan volcano (China/North Korea) ca. 969 AD, Bulletin of Volcanology, 61, 537–555. doi:10.1007/s004450050004
  292. Walker, G.P.L., 1980, The Taupo pumice: product of the most powerful known (ultraplinian) eruption, Journal of Volcanology and Geothermal Research, 8, 69–94. doi:10.1016/0377-0273(80)90008-6
  293. Begét JE, Mason OK, Andersen PM (1992) Age, extent and climatic significance of the c. 3400 BP Aniakchak tephra, western Alaska, USA, Holocene, 2, 51–56. doi:10.1177/095968369200200106
  294. Miller, T.P. & Smith, R.L., 1997, Late Quaternary caldera-forming eruptions in the eastern Aleutian arc, Alaska, Geology, 15, 434–438. doi:10.1130/0091-7613(1987)15<434:LQCEIT>2.0.CO;2
  295. Hildreth, W., 1983, The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska, Journal of Volcanology and Geothermal Research, 18, 1–56. doi:10.1016/0377-0273(83)90003-3
  296. Self, S. & Rampino, M.R., 1981, The 1883 eruption of Krakatau, Nature, 294, 699–704. doi:10.1038/294699a0
  297. Pain, C.F., Blong, R.J. & McKee, C.O., 1981, Pyroclastic deposits and eruptive sequences on Long Island, Papua New Guinea. 1. Lithology, stratigraphy, and volcanology, Geological Survey of Papua New Guinea, Memoirs, 10, 101–107.