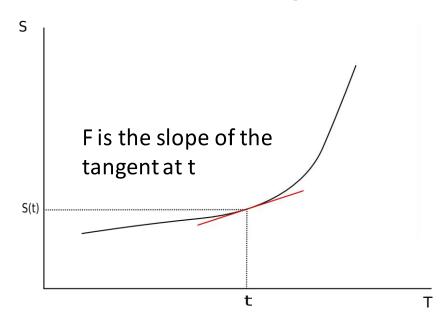
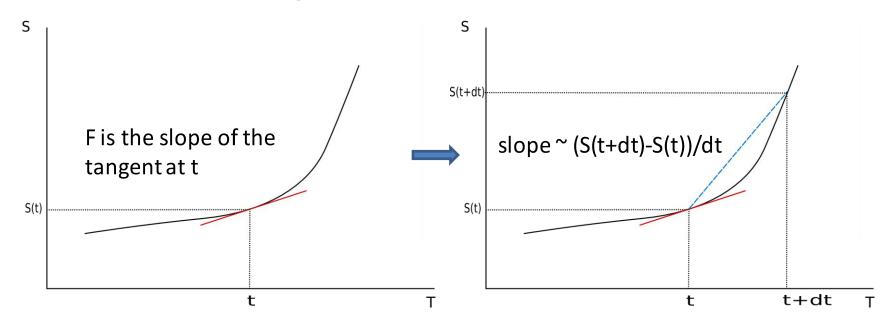
- System dynamics deals with
- Stocks how much there is of a given quantity
- Flows rates of change of the stocks
- Variables that weight flows
- Links that connect variables to stock or flows

 Since flows can link together different stocks, systems that include complex feedback loops can be modelled

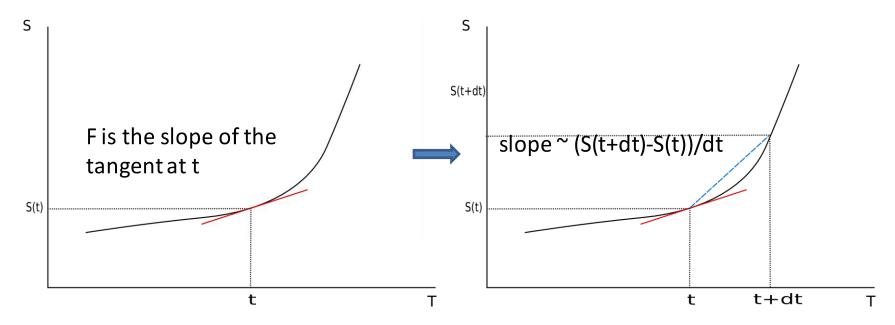
- The Stock-flow model is essentially a diagrammatic way of representing differential equations
- Rate of change of stock dS/dT = F(S,T)



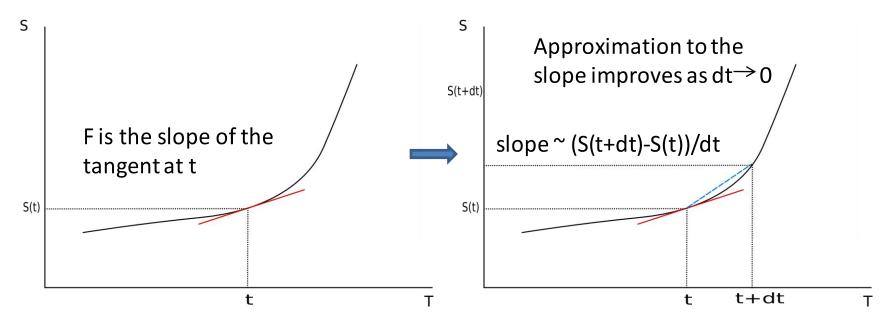
- The Stock-flow model is essentially a diagrammatic way of representing differential equations
- Rate of change of stock dS/dT = F(S,T)



- The Stock-flow model is essentially a diagrammatic way of representing differential equations
- Rate of change of stock dS/dT = F(S,T)



- The Stock-flow model is essentially a diagrammatic way of representing differential equations
- Rate of change of stock dS/dT = F(S,T)



- The Stock-flow model is essentially a diagrammatic way of representing differential equations
- Rate of change of stock dS/dT = F(S,T)

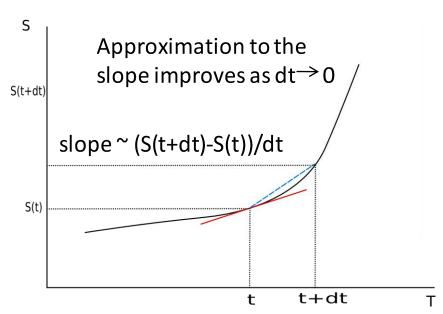
Computers need to use a finite dt so:-

We replace the differential equation

$$\frac{dS}{dt} = F(S,T)$$

with the difference equation

$$\frac{S(t+\delta t)-S(t)}{\delta t}=F(S,T)$$



Re-arranging we get

$$S(t + \delta t) = S(t) + F(S, T) \times \delta t$$

This is called the <u>forward Euler method</u>

- Exact only for straight lines
- Accuracy improves as dt → 0
- Large dt may not just be inaccurate but <u>unstable</u>
 - Results are not just inaccurate but disastrous!

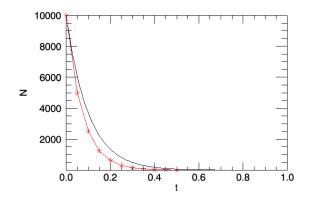
Rate of change of population depends on its current value

Differential equation

$$\frac{dN}{dt} = \lambda N$$

Exponential growth (λ >0) or decay (λ <0)

$$N = N(0) \exp(\lambda t)$$



 $\lambda = -10$, dt=0.05

Difference equation

$$N(t+\delta t) = N(t)(1+\lambda \delta t) = N(t)(1+k)$$

Geometric growth (k > 0) or decay (-1 < k < 0)Oscillatory growth (k < -2) or decay(-2 < k < -1)

$$N(n) = (1 + \lambda \delta t)^n N(0) = (1 + \frac{\lambda t}{n})^n N(0)$$

$$t = n\delta t$$

Differential equation in black Difference equation in red

Note the error from a finite timestep

(but which equation is the better approximation?)

Rate of change of population depends on its current value

Differential equation

$$\frac{dN}{dt} = \lambda N$$

Exponential growth (λ >0) or decay (λ <0)

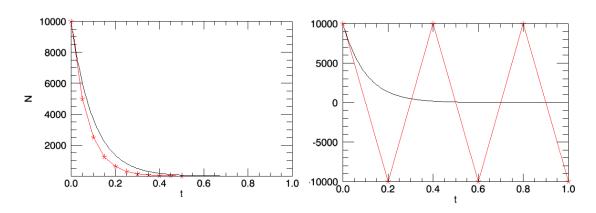
$$N = N(0) \exp(\lambda t)$$

Difference equation

$$N(t+\delta t) = N(t)(1+\lambda \delta t) = N(t)(1+k)$$

Geometric growth (k > 0) or decay (-1 < k < 0)Oscillatory growth (k < -2) or decay(-2 < k < -1)

$$N(n) = (1 + \lambda \delta t)^n N(0) = (1 + \frac{\lambda t}{n})^n N(0)$$



$$\lambda = -10$$
, dt=0.05

$$\lambda = -10$$
, dt=0.2

Rate of change of population depends on its current value

Differential equation

$$\frac{dN}{dt} = \lambda N$$

Exponential growth (λ >0) or decay (λ <0)

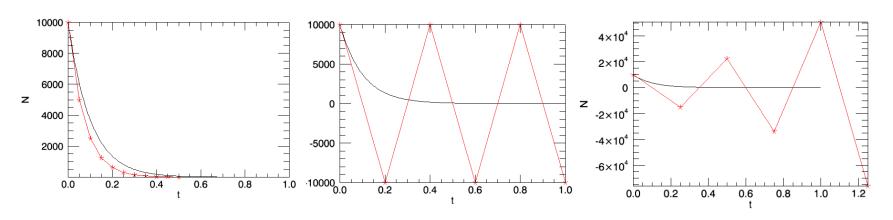
$$N = N(0) \exp(\lambda t)$$

Difference equation

$$N(t+\delta t) = N(t)(1+\lambda \delta t) = N(t)(1+k)$$

Geometric growth (k > 0) or decay (-1 < k < 0)Oscillatory growth (k < -2) or decay(-2 < k < -1)

$$N(n) = (1 + \lambda \delta t)^n N(0) = (1 + \frac{\lambda t}{n})^n N(0)$$



$$\lambda = -10$$
, dt=0.05

$$\lambda = -10$$
, dt=0.2

$$\lambda = -10$$
, dt=0.25

Rate of change of population depends on its current value

Differential equation

$$\frac{dN}{dt} = \lambda N$$

Exponential growth (λ >0) or decay (λ <0)

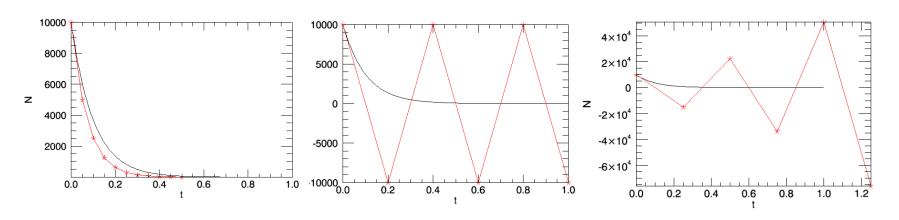
$$N = N(0) \exp(\lambda t)$$

Difference equation

$$N(t+\delta t) = N(t)(1+\lambda \delta t) = N(t)(1+k)$$

Geometric growth (k > 0) or decay (-1 < k < 0)Oscillatory growth (k < -2) or decay(-2 < k < -1)

$$N(n) = (1 + \lambda \delta t)^n N(0) = (1 + \frac{\lambda t}{n})^n N(0)$$



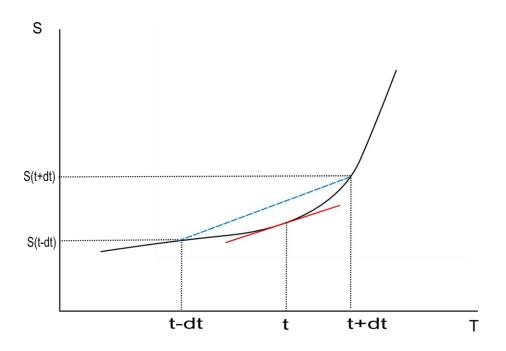
$$\lambda = -10$$
, dt=0.05

$$\lambda = -10$$
, dt=0.2

$$\lambda = -10$$
, dt=0.25

Try to get a more accurate approximation good for quadratic curves

$$\frac{dS}{dt} \approx \frac{S(t+dt) - S(t-dt)}{2\delta t}$$



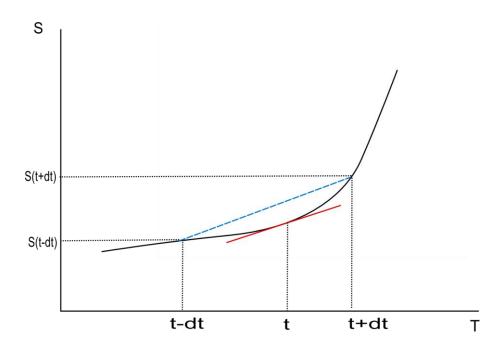
$$\frac{dN}{dt} = \lambda N$$

$$N(t+dt) = N(t-dt) + 2\delta t N(t)$$

Need two starting values N(0) and N(dt)

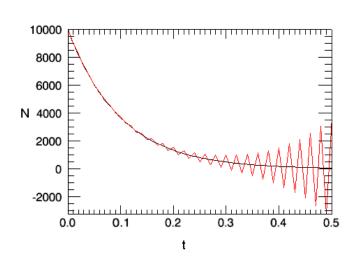
Try to get a more accurate approximation good for quadratic curves

$$\frac{dS}{dt} \approx \frac{S(t+dt) - S(t-dt)}{2\delta t}$$



$$\frac{dN}{dt} = \lambda N$$

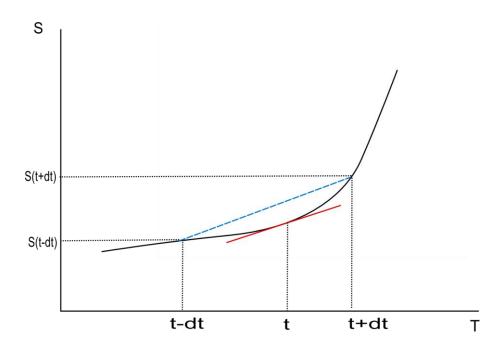
$$N(t+dt) = N(t-dt) + 2\delta t N(t)$$



Initially more accurate than forward Euler, but...

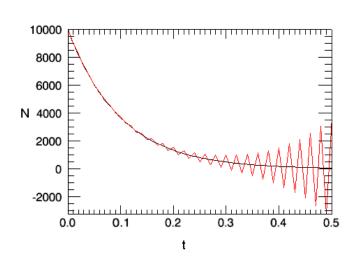
Try to get a more accurate approximation good for quadratic curves

$$\frac{dS}{dt} \approx \frac{S(t+dt) - S(t-dt)}{2\delta t}$$



$$\frac{dN}{dt} = \lambda N$$

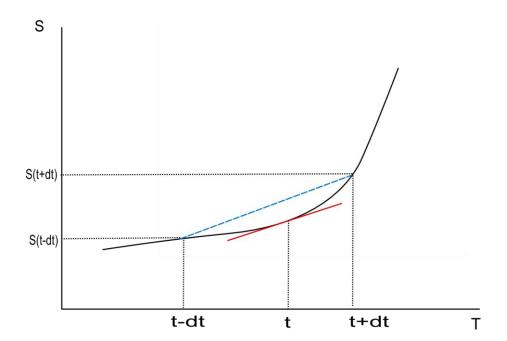
$$N(t+dt) = N(t-dt) + 2\delta t N(t)$$



Initially more accurate than forward Euler, but...unstable for all dt!

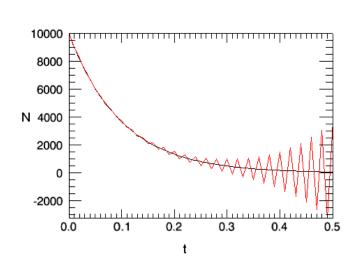
Try to get a more accurate approximation good for quadratic curves

$$\frac{dS}{dt} \approx \frac{S(t+dt) - S(t-dt)}{2\delta t}$$



$$\frac{dN}{dt} = \lambda N$$

$$N(t+dt) = N(t-dt) + 2\delta t N(t)$$



Initially more accurate than forward Euler, but...unstable for all dt!

The logistic equation

The logistic equation with carrying capacity K

$$\frac{dN}{dt} = rN(1-N/K)$$

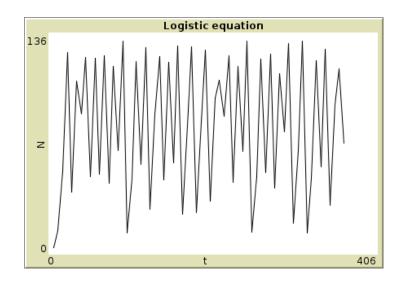
$$N = \frac{KN(0)}{N(0) + (K - N(0)) \exp(-rt)}$$

Logistic equation

K = 100

The discrete version can exhibit deterministic chaos

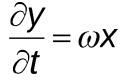
$$N(t+\delta t) = N(t)(1+r\delta t) - N(t)^2 r \delta t / K$$

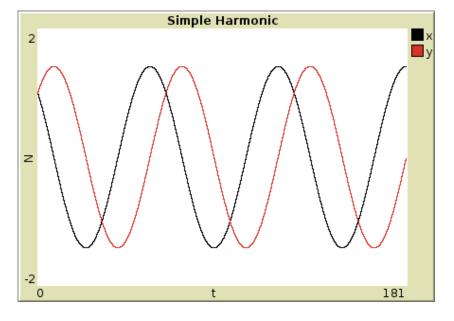


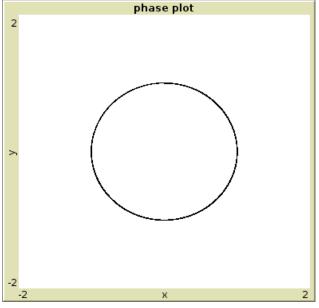
Coupled Equations

$$\frac{\partial X}{\partial t} = -\omega y$$

Simple harmonic motion Sinusoidal oscillations





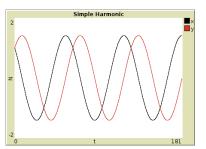


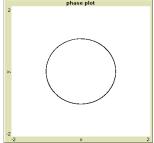
Coupled Equations

$$\frac{\partial X}{\partial t} = -\omega y$$

$$\frac{\partial \mathbf{y}}{\partial t} = \omega \mathbf{x}$$

Simple harmonic motion Sinusoidal oscillations

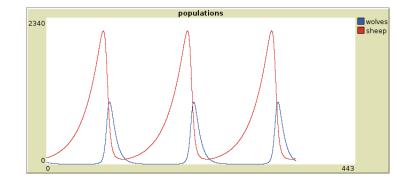


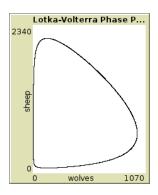


$$\frac{\partial x}{\partial t} = \alpha x - \beta x y$$
$$\frac{\partial y}{\partial t} = \gamma x y - \delta y$$

$$\frac{\partial \mathbf{y}}{\partial t} = \gamma \mathbf{x} \mathbf{y} - \delta \mathbf{y}$$

The Lotka-Volterra equations Predator-prey Non-linear oscillations



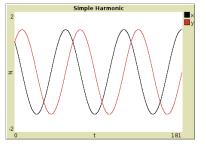


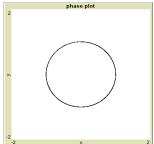
Coupled Equations

$$\frac{\partial X}{\partial t} = -\omega y$$

$$\frac{\partial y}{\partial t} = \omega X$$

Simple harmonic motion Sinusoidal oscillations

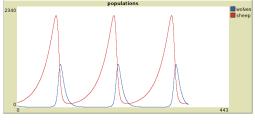


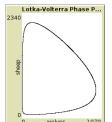


$$\frac{\partial \mathbf{X}}{\partial t} = \alpha \mathbf{X} - \beta \mathbf{X} \mathbf{y}$$

$$\frac{\partial y}{\partial t} = \gamma x y - \delta y$$

 $\frac{\partial x}{\partial t} = \alpha x - \beta xy$ The Lotka-Volterra equations $\frac{\partial y}{\partial t} = \gamma xy - \delta y$ Predator-prey Non-linear oscillations The Lotka-Volterra





$$\frac{\partial S}{\partial t} = -\beta SI$$

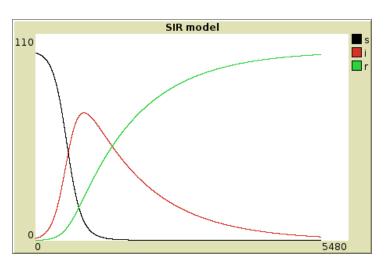
The SIR equations for spread of disease

$$\frac{\partial S}{\partial t} = -\beta SI$$

$$\frac{\partial I}{\partial t} = \beta SI - \gamma I$$

$$\frac{\partial R}{\partial t} = \gamma I$$

$$\frac{\partial \mathbf{R}}{\partial t} = \gamma \mathbf{I}$$



Space and time

$$\frac{\partial \mathbf{q}}{\partial t} = k \frac{\partial^2 \mathbf{q}}{\partial x^2}$$
 The diffusion equation in one dimension

Forward Euler in time

Discrete approximation to the second derivate

$$\frac{q(t+\delta t,x)-q(t,x)}{\partial t}=k\frac{q(t,x+\delta x)-2q(t,x)+q(t,x-\delta x)}{\delta x^2}$$

A smoothing operation

$$q(t+\delta t,x) = q(t,x) + \frac{2k\delta t}{\delta x^2} \left(0.5(q(t,x+\delta x)+q(t,x-\delta x))-q(t,x)\right)$$

Replace q at x by the average of the values on either side