System Dynamics

System dynamics deals with

Stocks — how much there is of a given quantity
Flows — rates of change of the stocks
Variables — that weight flows

Links — that connect variables to stock or flows

Since flows can link together different stocks,
systems that include complex feedback loops can
be modelled



System Dynamics

 The Stock-flow model is essentially a

diagrammatic way of representing differential
equations

 Rate of change of stock dS/dT = F(S,T)

Fis the slope of the
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System Dynamics

 The Stock-flow model is essentially a

diagrammatic way of representing differential
equations

 Rate of change of stock dS/dT = F(S,T)

S

. Approximation tothe
Computersneed to use a finite dt so:- PP

slopeimprovesas dt— 0
S(t+dt)

We replace the differential equation

slope ~ (S(t+dt)-S(t))/dt
®_F(sT) 7
dt I
with the difference equation
S(t+3t)=S(t) _ (ST

ot t t+dt T



System Dynamics

e Re-arranging we get
S(t+ot)=S(t)+ F(S,T)x ot

e Thisis called the forward Euler method

— Exact only for straight lines
— Accuracy improves as dt— 0

— Large dt may not just be inaccurate but unstable

e Results are not just inaccurate but disastrous!



Euler method example

Rate of change of population dependson its current value

Differential equation Difference equation

aN _ AN N(t+5t) = N(t)(L+ 25t) = N(t)(L+ k)
at
Geometric growth (k >0) or decay ( -1<k<0)
Exponential growth (A>0) or decay (A<0) Oscillatory growth (k < -2)or decay(-2<k<-1)
N = N(O) exp(At) N(n) = (1+ 256)" N(O) = (1+ 25y N(O)
n
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(but which equationis the better approximation?)
A=-10, dt=0.05



Euler method example

Rate of change of population dependson its current value

Differential equation Difference equation

d_N = AN N(t+ot) = N(t)(1+ Aot) = N(t)(1+ k)
at
Geometric growth (k >0) or decay ( -1<k<0)
Exponential growth (A>0) or decay (A<0) Oscillatory growth (k < -2)or decay(-2<k<-1)
N = N(O) exp(At) N(n) = (1+ 256)" N(O) = (1+ 25y N(O)
n

! t

A=-10, dt=0.05 A=-10, dt=0.2



Euler method example

Rate of change of population dependson its current value

Differential equation Difference equation

an _ AN N(t+8t) = N(E)(L+ 15t) = N(t)(L+ K)

dt

Geometric growth (k >0) or decay ( -1<k<0)

Exponential growth (A>0) or decay (A<0) Oscillatory growth (k < -2)or decay(-2<k<-1)
At
N = N(0) exp(it) N(n) =1+ A5t)"N(0) = 1+ —)"N(O)
n
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A=-10, dt=0.05 A=-10, dt=0.2 A=-10, dt=0.25



Euler method example

Rate of change of population dependson its current value

Differential equation Difference equation

an _ AN N(t+8t) = N(E)(L+ 15t) = N(t)(L+ K)

dt

Geometric growth (k >0) or decay ( -1<k<0)

Exponential growth (A>0) or decay (A<0) Oscillatory growth (k < -2)or decay(-2<k<-1)
At
N = N(0) exp(it) N(n) =1+ A5t)"N(0) = 1+ —)"N(0)
n
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A=-10, dt=0.05 A=-10, dt=0.2 A=-10, dt=0.25 Kerboom!



Leapfrog method

Try to get a more accurate approximation good for quadratic curves

dS  S(t+dt)— S(t - d) aN _ N
dt 25t a

N(t+ dt) = N(t — dt) + 25tN(t)

S

Need two starting values
N(0) and N(dt)

S(t+dt)

S(t-dt)

t-dt t t+dt T



Leapfrog method

Try to get a more accurate approximation good for quadratic curves
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Leapfrog method

Try to get a more accurate approximation good for quadratic curves

dS  S(t+dt)— S(t - d) aN _ N
dt 25t a

S
N(t+dt) = N(t—dt)+ 26tN(t)
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Initially more accurate than forward Euler,
but...unstable for all dt!



Leapfrog method

Try to get a more accurate approximation good for quadratic curves

dS  S(t+dt)— S(t - d) aN _ N
dt 25t a

S
N(t + dt) = N(t — dt) + 25tN (£)
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Higher order methods can be better,
But need care -
e.g. Midpoint method, Runge-Kutta methods

Initially more accurate than forward Euler,
but...unstable for all dt!



The logistic equation

The |08i5ti_C equatio.n The discrete version can
with carrying capacity K exhibit deterministic chaos
dN
el N@1-N/K) N(t+6t) = N(t)(1+ rt)— N(£)2rst] K
KN(0)

N= N(0) + (K — N(0)) exp(rt)

Logisti ti
Logistic equation La6 ogistic equation
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Coupled Equations

ot Simple harmonic motion
Sinusoidal oscillations

Simple Harmonic phase plot
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Coupled Equatlons

Simple harmonic motion
Sinusoidal oscillations

The Lotka-Volterra

— X — /))X)/ equations

Predator-prey
Non-linearoscillations
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Space and time

2
@_ ka { The diffusion equation
ot axz in one dimension

Discrete approximation to

Forward Euler in time the second derivate
q(t+ot,x)—q(t, x) q(t, x+ ox) —2q(t, x) + g(t, x— 6X)
ot =K %

A smoothing operation

ket (0.5(q(t, X+ 6x) + q(t, x—6X)) — q(t, X))

SX°

q(t+ot, x) = q(t, xX)+

Replace q at x by the average
of the values on either side



